If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12n^2+18n=0
a = 12; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·12·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*12}=\frac{-36}{24} =-1+1/2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*12}=\frac{0}{24} =0 $
| 41=15+19+x | | x2-2085=124 | | 9x-88+11x-72=180 | | 2t-35=13 | | 1/2(29-b)=7.75 | | 8n+1=8n+1 | | -4x+9+5x=13x | | 9(k+3)=99 | | y–(-2)=54 | | 41=15+19=x | | 14y+4y-13y=10 | | 1/2(10x-2)+6=6+2x+2x | | 5(x+3)+9=3(x-6)+6 | | x2-13=87 | | x2+136=140 | | d/10-93=-89 | | 6(x=12)=42 | | 5e+2(3e+9)=7e+24 | | 81=5x+9+4x | | 4x+6+3x-9=18 | | 180=75+5+25x | | 6y+22=82 | | 52=y÷10 | | 11=n-(-14) | | 6x-5=2(2x+1)+3 | | 7=0.2x+0.8 | | 1/5x+16=31 | | 2y+40=3y+15 | | 6=6f | | -4(4b-3)=19 | | 9(b+33)=81 | | 15x-41+7x+67=180 |